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FOREWORD

The work described in this report was performed in the Fire Control
Formulation Branch (K41), SLBM Research and Analysis Division, Strategic
Systems Department, and was authorized under Strategic Systems Program Office
Task Assignment 36401. This work was necessitated by the need to formulate an
exact method of computing geodetic latitude and altitude.

This report has been reviewed and approved by Davis Owen; Johnny Boyles;
Robert Gates, Head, Fire Control Formulation Branch; and Sheila Young, Head,
SLBM Research and Analysis Division.

This document is a revised version of NSWC TR 85-85, dated April 1985. The
distribution statement has been changed.

Approved by:

R L. SC MIDT, Head

Strategic and Space Systems Department
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INTRODUCTION

Following is a simple and efficient model for calculating the exact
geodetic latitude and altitude of an arbitrary point in space, given the
coordinates of that point. The model assumes the earth to be an oblate
spheroid; i.e., an ellipsoid of revolution whose semimajor axis (a) is the
radius of the circle described by the equatorial plane, and whose semiminor
axis (b)) is a line joining its center and one of its poles. The point in
gquestion can be either inside or outside the ellipsoid, but not too close to
the center of the ellipsoid. The solution of the problem and its constraints
will now be expounded.

FORMULATION

Choose an earth-fixed Cartesian coordinate system whose origin coincides
with the <center of the ellipsoid. The wunit wvectors i, j, k coincide
with the (x, v, 2) axes, respectively. The +z axis points in the direction of
the North Pole. The +x axis is the line of intersection of the equatorial
plane and the plane of zero longitude. The +y axis completes a right~-handed
coordinate system.

An equation of the ellipsoid in this frame is

R? z?

N - 2+2'

7 b 1, where R V X y (1

Let P(xg, Yoo z,) be the coordinates of the given point. It is desired to
find the points P(x, y, z) at which the normals from P to the surface of the
ellipsoid cut the ellipsoid.

The slope of a normal to the ellipsoid at any point on its surface is
given by
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(Rg = Rla?z = (z5 - z)b?R ,

or

Roa?z = R{a%z + bZ(zy; - z)} = R{ta? - b?)z + blz;}

Squaring both sides and expressing R in terms of z,
. 2

a?b?Riz? = (b? - z2){ta- - b2z + blz,}

Writing the 2bove equation in descending powers of 2z, we obtain the
following biquadratic in z:

2
(a? - b?) z* + 2b%(a? - b?)zyz? + b?{a?R? + b?z{ ~ (a? - b?)2}z? -
2b* (a? - b?)zyz - bbz¢ = 0.

Now z is either positive or regative and therefore is not an appropriate
variable for the solution. However, this difficulty is easily circumvented by

z
introducing a new dimensionless variable k ® ~—, Using the constraint that 2z
29
always has the same sign as z;, we see that k is always positive. Putting z =
zgk in the biquadratic and writing the resulting equation such that the
coefficient of k* is unity, we finally obtain

k* + 2pk® + gk? + 2rk + s = O (*)
where
b2
P =3 T pl (3)

b?{a?R§ + b?z§ - (a2 - b?)?}

1°F (a? - b?)%z} (4)
bk

T - (az - bz)zg (S)
6

§ = = b (6)

(a2 - b0)i7]

Now we will emplov two of three powerful theorems in the Theorv ot Faua=-
tions to expose the nature of the roots of (%). The third theorem will he
needed later on. The proofs of these theorems are given in Reference [.

2
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I. An equation f{x) = 0 cannot have more positive roots than there are
changes of sign in f(x}, and cannot have more negative roots than there are
changes of sign in f(-xJ.

II. Every equation which is of an even degree and has its last term
negative has at least two real roots, one positive and one negative.

III. Every equation of an odd degree has at least one real root whose sign
is opposite to that of its last term.

By observing (%) and (3), (4), (5), (6), we deduce at onre the following
conclusions:

(i) Since the last term of (%), namely s, is negative, there are at least
twe real roots of opposite sign (using II1),

(ii) Since there 1s only one change of sign in (¥), irrespective of
whether ¢ is positive or negative, there is at most one positive root
{using I).

From (i) and (ii) we see immediately that (*) has exactlv one positive

root. Since k is constrained to be positive, this positive root is the one we
seek.

SOLUTION OF BIQUADRATIC

The solution of (%) is effected by a standard method known as Ferrari's
method which will now be enunciated.

In the equation
k* 4 2pk? + qk? + 2rk + s = 0

add to each side (ck + d)?, the quantities ¢ and d being determined so as to
make the left-hand side a perfect square; then

k' + 2pk® + (q + c¢?)k? + 2(r + cd)k + s + d? = (ck + d)?.

Suppose that the left side of the equation is equal to (k? + pk + t)?,
then by comparing the coefficients, we have

p? + 2t =g+ c?, pt =r + cd, t? = s 4 d2. (7
By eliminating ¢ and d from these equations, we obtain
(pt - )¢ = (2t + p° - qi(t? - s},

or 2t® ~ qt? + 2(pr - s)t ~ p?s + g5 -~ rZ = Q, (&)

3
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From (3), (&), (5), and (6), we see that

a?b¥ R}
- = -l - 12 = -
pr s 0, -p°s + gs r (af - b?)*zg

Substituting into (8), we obtain the following cubic in t:

alb? R}

(a? = b?)*z]

2t3 - qt? -

Applying Theorem IIT to ¢(8'), we see that (8') has at least one

root. Now applying Theorem I to (8'), we see that it has at most one
root, irrespective of whether q is positive or negative. Hence
exactly one positive root.

The solution of a cubic is accomplished by a standard method

Cardan's Solution.

i.e.,

or

Let

First eliminate the t? term in (8') by making the substitution

aZbSRg

T (a? - b?)'zy

27 + %)3 - q(t” + %)2

28 p2
2 3 a“b® R§
R A i 7 T34 gt

3 a’b® R}
108 ~ 2(a? - bI)" 2z

f = - h= -

2
12 °

so that the above equation can be written in the form

t’? ¢+ ft° + h =0
To solve (9), let t° = u + v then

£t = (u + v)3 =gl 4+ v 4 av (u 4 o) o= oud o4+ vl o+ Agvt”

{8')

positive
positive

8") has

known as

(9



NSWC Tk %3=-%3
and (9) becomes
u? 4 vd 4 (3uv + £)t7 + ho= 0,

At present, u and v are anv two quantities subject to the condition rhat
their sum is equal to one of the roots of (9); if we further suppose that thev

‘ satisfy the equation 3uv + f = 0, they are completely determinate. We thus
obtain
, 3
w + vi= - h, Wi o= - 57
Hence, u2, v? are the roots of the quadratic
£3
2 oy
a® + ho 57 = 0
Thus,
h h? f3
@=c7rd s T
. ‘ h h¢ | f3 h he  f3
3=-_ LI, . - - - RL I — . -
Putting u 5 + Tty v3 = > -t 37 o e obtain t~ from
the relation t~ = u + v.
- (1/3 1/3
. h h? 3 h h? f£3
Hence, t*(—§'+ h+?§') +(-§'— Z—+'—7‘) . (10

2
The solutinp (10) e valid provided that ?— + 5352 0. It will now be
shown that this constraint is valid for all points of interest.

1§ g3 a’b® R§ 2 3
4 1 108 ~ 2(a? - b2>~zg} T 46656

h? | f3
st o7

a?b8ROZq3 a"tblGR“;
" %32(al - bl)vzy | 16(al - bZ)B 2}

azb“Rg{a?-Rg + bzzg - (32 - b2)2}3 a"b”’Ra

= 433(al - b2)10550 * T6(al - 60528

using (4)

a’b'" R}
i

= 2Rl a0l - 2 . 2y2
= el s nigiiggo [AtRE # bizg - tat = b}

27a°b?(a? - b%)12Rj 2§ |




Thus, the required candition 1s

{a?RZ + blzZ - (a? - b¥)%}H 4 27athi(al - bRy 2 U Lo

Bv inspection and also by trial, it is seen that rhe above constraint is
valid at all points of interest. As a matter of fact, the onlyv points where 1r
does not hold are those that are relatively close to the origin, i.e., the

center of the ellipsoid; and these points are of no practiral inferest.

Now
. a’b® R}
hoe -3 0 —s
108 2¢a? - h%)7zg
b"{azké + bzzg ~ 1g? ~ hi)i}s a;‘thg
=T 108(a% ~ b?)b 2z T 2(af - bz
b® ;

[{a?R§ + b2z - &’ - b?)¥}? + S4alhia® - he/R3zE 1.

108(a - b6zt

If the constraint (11) holds, then the expressinn in the brackets above is
positive. Hence, h is negative. Applving Theorem III to (9), we conclude thar
(9) has at least one positive root. Now applying Theorem I to (9} and using
the fact that both f and h are negative, we conclude that (9) has at most one
positive root. Hence, (9) has exactly one posifive root. It will now be shown
that this positive root is given by (10).

h? f£3
Letg=z—+-2—7-, then

ua(\rg‘-

oo
p

h? f3 ) 9
Now g - 7 57 < 0, since f = ~ 13 ¢ 0
h h . h h
Therefore, (Yg - 3) ( ¥Yg + 3) < 0, which implies that Vg - S and Vg + 3
, . . h h h
are of opposite sign: however, since h < 0, Vg - = > Vg + = Henice, Vg - = »
o— h . \ -
0>vg + 33 1.0, ud v > 0. Thus, t7 = u + v > (.
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Proreading with our derivation, we have
r =t o+ % > 0

Solving foi ¢ and d from the system of equations (7), we have

C=J—p2-q+2t,d= t? ~ s
sow (k? + pk + t)- = (ck + di-
or k% + pk + t =+ (ck + d)
from which we obtain the twa quadratics in k:
k! + (p=-c)k+t -d=0
k? + (p+ c)k+ ¢t +d=20

From (12) and

+\[<p‘

- . 2 . -
ki - (p - ¢) - c) 4t d) i
-{p - ¢) - \[(p - ¢}t - 4t - d)
kz = 2 *
_-lp + c} ¢+ \[(p + c)? - 4t 4+ d)
k3 - 2 L]
_-lp + c} - Jkp + c)d - 4t + d)
ko= >

DERIVATION OF

It has alreadv been shown

t? d?
oppesite sign;
of (12)
to (12), we see
Inspecting the first
positive ront.

= 5 ¢ 0, (t + d)(t
but d > 0;

twn

The rtest nf the solution follows trivially.

75k

- d)
thus

and has just been shown

root

GEODETIC ALTITUDE AND LATITUDE

that (%) has exactly one positive root.

< 0, which implies that t + d
t+d>0>t ~d. Nowt - d
to be negative,

s above, it

Let k = k,,

~1

(13), we ohtain the following four roots of (*%):

Since
and t - d are of
is the last term

Hence, bv applving Theorem I1I
immediately that (12) must contain the desired positive root.
is clear that k,

is the required

then
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R = a 1 - gy , and
X = X R )
= Xo RO R
y = ¥, %; ) 3 where Ry # 0
A = tan”! <

(Here X 1is the longitude at (x, y)).

The above sciution is not applicable to the case 2z, = 0 since two af the
baric parameters of the solution, q and s, involve a division by z;. Also, the
solition is not applicable to the case Ry = 0. Hence these two cases have tao
he treated separately; nevertheless, this poses no difficultv since the resulrs
are already known then.

The geodetic altitude is given by

RS 3 ‘ —
H=sign(——+—;-l)\/(x -x)2+(y ~—y)2+(z - z)”

2 2 ) ] 0 0

a b /

R 22

0 0 B
=sign(——+-—-—1) \/(;2 -R¥+ (z, - 2)?

a2 b2 0 0

In order to find the geodetic latitude and the unit normal vector at (x,
y, ), it is desirable to introduce a geometric term, Ne, which is never zero.
Ne is defined to be the distance along the ellipsoidal normal from the surface
of the ellipsoid to the z-axis (Reference 2). (See Figure 1.)

~

e

FIGURE 1. ELLIPSOIDAL NORMAL
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From Figure 1, we have

R
cos ¢ = Ne
Also,
a‘z R
tan ¢ = BTR from (2).
Hence,
. v 52 qu e
Ne = R sec ¢ = R Q 1 + tan‘¢ = R VF} + g;;: = =2 ;zh R .
i = cos ¢ ¢t p = a’z
sin ¢ = s an ¢ bl Ne

Thus, the components of the unit normal vector at (x, y, z) are

The geodetic latitude ¢, is

¢ = sin”! H,

This completes our solution.

CONCLUSTION

In contrast to other methods currently in use, this method theoretically
computes the exact values of the geodetic latitude and altitude, assuming the
carth to be a perfect ellipsoid of revolution. The method was programmed and
run for many given values of Xy, vy, 2. It gave results which are consistent
with those of other methods, including Brookshire's approximation (Reference 3)
and an iterative technique (Reference 4). Roundoff errors are negligible. For
all practical purposes, the results are excellent and the method is definitely
recommended as an alternative approach to problems involving geodetic latitude.
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APPENDIX

THE INVERSE PROBLEM

An arbitrary point in space is defined by A, ¢. and H. Solve for (H,,
H,., H;), {(x, v, 2), and (x5, vy, 2Z)-

This problem is relatively easy to solve. From page 9, we have

2
R = N2 cos ¢, z = 57 Ne sin ¢.

2 2
Using the relation §7 + 5? = ], we obtain

o

2 2
E;— (coszé + h; sinza) = ];
a a

or

Ne = a = a

? 2 |
\/cosz¢ + gy sin?¢ ‘/1 - (1 - 27) sin?¢

Also, from page 8, we have

-1 X “1 Y -1 X
A = tan x = gin R cos R

Therefore,
Xx = R cos A = Ne cos ¢ cos A,
y = R sin A = Ne cos ¢ sin A.
Hence,

X Ne cos ¢ cos A

yl = }INe cos ¢ sin XA},
2

z =5 Ne sin ¢
22
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T x
H, Ne cos ¢ cos \
H, § = %; = lcos 0 sin }
H, (_)3 z_ sin 0

L b Ne

From Figure 1, it follows immediately that

H, (Ne + H) cos 0 cos \

(Ne + H) cos ¢ sin A

bl
(= Ne + H) sin o
a

= &
1}
M
SIS B S
[
+
=x
o
w o
]

Zg
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